File Im ### National Aeronautics and Space Administration Goddard Space Flight Center Contract No.NAS-5-12487 ST _ MAT _ 10 523 # REPRESENTATION OF SPINORS IN THE $\,n\,$ DIMENSIONAL SPACE BY A SYSTEM OF TENSORS | v. A. Zhelnorovich | GPO PRICE \$ | |--------------------|-------------------| | | CFSTI PRICE(S) \$ | | (USSR) | | | | Hard copy (HC) | | · | Microfiche (MF) | | | ff 653 July 65 | N67 12907 (ACCESSION NUMBER) (PAGES) (CODE) (NASA CR OR TMX OR AD NUMBER) (CATEGORY) # REPRESENTATION OF SPINORS IN THE n-DIMENSIONAL SPACE BY A SYSTEM OF TENSORS Doklady AN.SSSR, Matematika Tom 169, No. 2, 255-258 Izdatel'stvo "NAUKA", 1966 by V. A. Zhelnorovich #### 1. BASIC DETERMINATIONS. Let us consider at the outset a four-dimensional complex Euclidean space $R_n^+,\,n=2\nu,\,$ referred to the orthonormalized base e_i. Let $\gamma_1,\,\gamma_2,\,\ldots,\,\gamma_{2\nu}$ be the dimensionality matrices 2^{ν} , satisfying by definition the equation $$\gamma_i \gamma_j + \gamma_j \gamma_i = 2\delta_{ij} I, \tag{1}$$ where δ_{ij} is the Kronecker symbol, I is the unitary dimensionality matrix $2^{\mathbf{v}}$. We shall introduce the denotation $\gamma_{i_1,i_2\dots i_R}=i^{h(k-1)/2}\gamma_{i_1}\gamma_{i_2}\dots\gamma_{i_R},\ i_1< i_2<\dots< i_k$. The matrices $I,\,\gamma_i,\,\gamma_{i_1}\gamma_{i_2}\dots i_n$ are linearly independent and form a group of elements. As is well known, any two solutions $\gamma_i,\,\gamma_i$ of Eq. (1) are linked by the equality $\overline{\gamma_i}=T\gamma_i T^{-1},\,\det T\neq 0$, whereupon matrices γ_i may be chosen Hermitian, and in such a fashion that $\gamma_1,\,\gamma_2,\,\ldots,\,\gamma_\nu$ be symmetrical, and $\gamma_{\nu+1},\,\gamma_{\nu+2},\,\ldots,\,\gamma_{2\nu}$ antisymmetrical [1]. Let $L=\|\,l_q^{\,p}\,\|$ be the orthogonal transformation of the space R_{2v}^+ . The multiplicity of unimodular matrices S, determined from the equation $$\gamma_p = l_p{}^q S \gamma_q S^{-1}, \tag{2}$$ form a group materializing the representation of the group L, called <u>spinor</u> representation. The object $\psi = \{\psi^i\}$ with components ψ^i determined with a precision to the sign transforming according to the representation of S, is called the <u>first rank spinor</u> in the space R_{2v}^+ . If γ_i is the solution of (1), it is obvious that γ_i^{T} (γ_i^{T} being the transposed γ_i) is also a solution of (1); this is why there exists a matrix C such that $\gamma_i^{\mathrm{T}} = C\gamma_i C^{-1}$, $\det C = 1$. If V is odd, it is easy to see that $C=\gamma_{V}\gamma_{V-1}\cdots\gamma_{1}$; if V is even, then $C=\gamma_{2V}\ldots\gamma_{V+1}$ in the case when $\gamma_{1},\gamma_{2},\ldots,\gamma_{V}$ are symmetrical, but $\gamma_{V+1},\gamma_{V+2},\ldots,\gamma_{2V}$ are asymmetrical. Hence it follows that $C^{\intercal}=(-1)^{\gamma(V-1)}C$. If ψ_{1} are the covariant components of the spinor ψ_{1} , then we have by definition $\psi_{1}=e_{ij}\psi_{1}$, where $E=\|e_{ij}\|=i^{n(n-1)/2}\gamma_{n}\gamma_{n+1}\ldots\gamma_{1}C$. We shall outline in the space R_n^+ the pseudo-Euclidean space R_n^- index s, upon fixing the base $ie_1...ie_se_{s+1}...e_n$. We shall introduce the Hermitian matrix ψ determined from the equations $$\Pi_{Y_i}\Pi^{-1} = \pm \gamma_i, \quad \Pi\Pi^* = (-1)^{(v-s)(v-s+1)/2}I;$$ (3) where the sign minus is for $i=1,\ldots,s$ and the sign plus is for $i=s+1,\ldots$, 2v. The dot above the letter denotes the complex mating. The spinor $\psi=\Pi\psi$ is called conjugate relative to ψ . Let us consider now the odd-dimensional spaces R_n^+ , n=2v+1, We shall denote $\gamma_{2v+1}=i\gamma_{1,2,\ldots,2v}$. The matrices with an even number of indices I, $\gamma_{i,i}$, ..., $\gamma_{i,i_2,\ldots,i_n}$ $(i_p=1,2,\ldots,2v+1)$ are linearly independent. The spinor representation of the intrinsic orthogonal group L of space $R_{2v+1}^{(s)}$, transformation is given by the group of matrices S determined from Eq. (2), in which the indices p, q acquire values from 1 to 2v+1. The covariant components of spinor ψ_1 are determined by the matrix E: $$(-1)^{\nu}\gamma_i{}^{\tau}=E\gamma_iE^{-1}.$$ The conjugate spinor ψ in space $R_{2\nu+1}^{(s)}$ is determined by the matrix Π $$\pm \gamma_i = (-1)^{\nu-s} \Pi_{\gamma_i}^{\cdot} \Pi^{-1};$$ where the sign minus is for i = 1, 2, ..., s. #### 2. REPRESENTATION OF SPINORS BY COMPLEX TENSOR SYSTEM Let us consider a complex matrix $\Psi = \{\psi^{ij}\}$ of dimensionality $\underline{\mathbf{r}}$. If $\psi^{ij} = \psi^i \psi^j$, ψ^{ij} must satisfy the equalities $$\psi^{ij}\psi^{hi} = \psi^{ih}\psi^{jl} = \psi^{il}\psi^{hj}, \quad \psi^{ij} = \psi^{ji}, \tag{4}$$ among which r(r+1)/2 - r equations $\psi^{vv}\psi^{ij} = \psi^{vi}\psi^{vj}$ $(i,j \neq v,\psi^{vv} \neq 0)$ and $^{i}/_{2}r(r-1)$ equations $\psi^{ij} = \psi^{i}\psi^{j}$, are independent. There are in all $(r^{2} - r)$ independent equations. Reciprocally, it follows from (4) that there exists a system of \underline{r} components ψ^{κ} , determined with a precision to signs such that $\psi^{ij} = \psi^{i}\psi^{j}$. In reality, if $\psi^{vv} = 0$ for all v, it follows from (4) that $\psi^{ij} = 0$ for all values of indices \underline{i} , \underline{j} . If $\psi^{vv} \neq 0$, we postulate $$\psi^h = \psi^{vh} / \pm \sqrt{\psi^{vv}}. \tag{5}$$ By the strength of (4) such a definition of ψ^k does not depend on the value of the index ν . Let us now assume that ψ^{ij} are components of the object Ψ , transforming according to the representation $S \times S$, where S is any representation of a certain group, and let Eqs. (4) be invariant relative to the group $S \times S$. Then the components ψ^k , determined according to (5) will be transformed according to the representation S. Indeed, it follows from (5) that the transformation of ψ^k is determined by the transformation of ψ^{ij} in a single fashion. Evidently, the identity (4) invariantness is maintained if ψ^k is transformed according to the representation S, consequently, by the strength of the uniqueness, ψ^k may be transformed only by the representation S. Thus the object ψ^{ij} , satisfying the identities (4) is equivalent to the object ψ^k . Let S be the spinor representation of a 2y-dimensional orthogonal group. It is well known that $$S \times S \sim \sum_{k=0}^{2^{\nu}} D^k,$$ where D^{h} is a representation by which a tensor of rank k, asymmetrical by all indices, is transformed. This means that in this case the object ψ^{ij} is equivalent to the tensor aggregate $\Lambda = \{c_0, c_i, c_{i_1 i_2}, \ldots, c_{i_1 i_2 \ldots i_{2\nu}}\}$. If S is the spinor representation of a (2v + 1)-dimensional group $$S \times S \sim \sum_{k=0}^{9} D^{2k}$$ $S \times S \sim \sum_{k=0}^{} D^{2k},$ and consequently, the object ψ^{ij} is equivalent to the tensor aggregate consisting of even rank tensors. The components of the antisymmetrical tensors $C_{i_1i_2\ldots i_k}$ may be determined as follows: $$c_{i_1 i_2 \dots i_k} = (A_{i_1 i_2 \dots i_k})_{\alpha_1} \psi^{\alpha_3}, \quad A_{i_1 i_2 \dots i_k} = E_{\gamma_{i_1} \gamma_{i_2} \dots \gamma_{i_k}}.$$ (6) Inasmuch as $\det \mathbf{E} \neq 0$ and $\forall i_1 i_2 \dots i_k$ are linearly independent, $A_{i_1 i_2 \dots i_k}$ are also linearly independent and consequently, the aggregates Λ are really equivalent to objects ψ^{ij} . Taking advantage of symmetry properties of C, it may be shown that matrices $A_{i_1i_2...i_k}$ have the following symmetry properties: $$(A_{i_1 i_2 \dots i_k})^{\mathsf{T}} = (-1)^{(\mathsf{v}(\mathsf{v}+1)+l(l+1))/2} A_{i_1 i_2 \dots i_k}.$$ This is why, so long as ψ^{ij} satisfies the identities (4), part of tensors $c_{i_1i_2...i_k}$ ([v(v+1)+k(k+1)]/2 being odd) become zero. If ψ^{ij} satisfy the identities (4), tensors $c_{i_1i_2...i_k}$ satisfy $\frac{1}{2}2^{\nu}(2^{\nu}-1)$ independent bilinear identities, all of which are included in the generalization of the Pauli identity for the case of a n-dimensional space, (See [2]) $$2^{\nu}(\psi^{+}\theta\psi)(\psi^{+}\theta'\psi) = \sum_{k=1}^{2^{\nu}} \sum_{i_{1} < i_{2} < \dots < i_{k}}^{2^{\nu}} (\psi^{+}\gamma_{i_{1}i_{2}\dots i_{k}}\psi)(\psi^{+}\theta'\gamma_{i_{1}i_{2}\dots i_{k}}\theta\psi) + \\ + (\psi^{+}\psi)(\psi^{+}\theta'\theta\psi), \quad n = 2\nu.$$ $$2^{\nu}(\psi^{+}\psi)(\psi^{+}\theta'\psi) = \sum_{k=1}^{2^{\nu}} \sum_{i_{1} < i_{2} < \dots < i_{k}}^{2^{\nu}+1} (\psi^{+}\gamma_{i_{1}i_{2}\dots i_{2k}}\psi)(\psi^{+}\theta'\gamma_{i_{1}i_{2}\dots i_{2k}}\theta\psi) + \\ + (\psi^{+}\psi)(\psi^{+}\theta'\theta\psi), \quad n = 2\nu + 1,$$ $$(7)$$ where θ' , θ are arbitrary matrices of dimensionality 2^{ν} ; ψ^+, ψ are covariant and contravariant component of the spinor. Therefore, spinor ψ^k in the space R_n^+ , $n=2\nu$, $2\nu+1$ is equivalent to the tensor aggregate Λ , consisting of complex antisymmetrical tensors satisfying $^{1}/_{2}2^{v}(2^{v}-1)$ bilinear identities (7). By virtue of this, any spinor equation may be written in an equivalent manner as an equation in tensor components $c_{i_1i_2,\ldots,i_k}$. Note that formula (3) determines the components ψ^k in any system of coordinates, but the transformation of components ψ^k to curvilinear coordinates is found to be nonlinear relative to ψ^k . ## REPRESENTATION OF SPINORS BY A SYSTEM OF REAL TENSORS We shill consider an r-dimensional complex matrix ψ^{pi} . Assume that $\psi^{p\dot{q}}=\psi^{p\dot{}}\psi^{q}$ Then ψ^{pq} will satisfy the identities $$\psi^{\dot{i}q} = (\psi^{\dot{q}\dot{p}}), \quad \psi^{\dot{m}n} \psi^{\dot{p}} \gamma = \psi^{\dot{m}n} \psi^{\dot{p}n} \tag{8}$$ among which $(\mathbf{r}-1)$ real equations $\psi^{\nu\nu}\psi^{pq}=\psi^{\nu q}\psi^{p\nu}$ $(p,q\neq\nu,\psi^{\nu\nu}\neq0)$ and \mathbf{r}^2 real equations $\psi^{pq}=(\psi^{qp})$ are independent. Obviously, if the components ψ^{k} determine the matrix ψ^{pq} the components $\psi^{k}e^{i\varphi}$, and only they, determine the same matrix ψ^{pq} . Reciprocally, it follows from (8) that there exists a system of component determined with a precision to the phase $e^{i\varphi}$, such that $\psi^{pq} = \psi^p \psi^q$. In reality if $\psi^{\nu\nu} = 0$ for all ν , it will follow from (8) that $\psi^{pq} = 0$ for all \underline{p} , \underline{q} . In this case we postulate $\psi^k = 0$. If $\psi^{\nu\nu} \neq 0$, we postulate $$\psi^k = \frac{\psi^{k}}{+V\psi^{k}} e^{i\varphi}, \tag{9}$$ where ϕ is an arbitrary real number. By virtue of (8) such a determination of ψ^k multiplicity does not depend on the value of \mathbf{v}_{\bullet} It may be shown that only the components ψ^k , determined according to (9) satisfy the equation $\psi^{pq} = \psi^p \dot{\psi}^q$. Assume that ψ^{pq} are components of an object transforming according to the representation S x S, where S is any representation of a certain group, and let the equalities (8) be invariant relative to the group S x S. Then, we may evidently point to such a law of transformation of φ that the components ψ^{k} transform according to the representation S. In this way the assignment of the object ψ^{iq} satisfying the identities (8) and of the argument φ of one of the components ψ^k fully determine the object Let S be the spinor representation of a 2γ -dimensional orthogonal group of transmations of the space $R_{2\nu}(s)$. It is well known that $$S \times S \sim \sum_{k=0}^{2\nu} D^k$$. This means that the object ψ^{pq} is equivalent to the tensor aggregate $\Omega = \{\Omega_0\Omega_i \dots \Omega_{i_1i_2\dots i_{2p}}\}$, consisting of antisymmetrical tensors. If S is a spinor representation in the space $R_{2\nu+1}^{(s)}$, $S \times S \sim \sum_{k=0}^{\nu} D^{2k}$, and in this case the object ψ^{pq} , is equivalent to the aggregate $\Omega = \{\Omega_0\Omega_{i_1i_2}, \ldots \Omega_{i_1i_2...i_{2\nu}}\}$, consisting of antisymmetrical tensor of even rank. The components of these tensors my be determined as follows: $$\Omega_{i_1i_2...i_k} = (D_{i_1i_2...i_k})_{\alpha_1} \psi^{\alpha\beta}, \quad D_{i_1i_2...i_k} = E\Pi_{\gamma_{i_1}\gamma_{i_2}} \dots \gamma_{i_k} i^{k(k+1)}^2.$$ Utilizing (3), we may show that matrices $p_{i_1i_2...i_k}$ are Hermitian. This is why, the components $\Omega_{i_1i_2...i_k}$ are real if ψ^{pq} satisfy the identity $\psi^{pq}=(\psi^{qp})\cdot$ If ψ^{pq} satisfy the identities (8), the components of tensors $\Omega_{i_1i_2...i_k}$ satisfy $(2^{\checkmark}-1)^2$ bilinear identities, of which everyone is contained in the identity (7). Therefore, the assignment of the aggregate Ω and of argument φ of one of the components fully determines the spinor. This means that the spinor equations may be written in an equivalent manner in components of the aggregate Ω and φ . Then, eliminating from such equations the argument φ , it is possible to obtain a closed system of equations in components of aggregate Ω . I wish to express my gratitude to L. I. Sedov for his valuable indications in the course of the work on the paper. #### **** THE END **** Moscow State University in the name of M. V. Lomonosov Manuscript received on 24 February 1966 Contract No.NAS-5-12487 VOLT TECHNICAL CORPORATION 1145, 19th st NW WASHINGTON D.C. 20036 Tel: 223 - 6700 Translated by ANDRE L. BRICHANT on 4-5 October 1966 #### REFERENCES - 1. J. A. SHOUTEN. Indag. Math, 11, 3, 4, 5 (1949) - 2. K. M. CASE. Phys. Rev., 97, 3, 810, 1955. #### DISTRIBUTION | GODDARD SPACE F.C. | NASA HQS | OTHER CENTERS | |--|---|--| | 100, 110, 400, 601
610, 611, 612, 613
614, 615, 620
630 GI for SS (3) | SS NEWELL, NAUGLE SG MITCHELL-SMITH SCHARDT DUBIN | A M E S R C SONETT (3) LIBRARY | | 640 HESS (3) 641 SCHMID (3) STUMPFF (12) MUSEN KELSALL DAVIS | SL FELLOWS HIPSHER HOROWITZ SM HOSTER GILL RR KURZWEG | LANGLEY RC 116 KATZOFF 303 ROBERTS 160 ADAMSON 185 WEATHERWAX (3) | | 542 VELEZ
547 SIRY
730 STAMPFL
252 LIBRARY
256 FREAS
VOLT NOLAN | RRA WILSON (3) RTR NEILL USS WHITING WX SWEET | J P L 111-113 LIBRARY (3) Vis.Lab WYCKOFF plus perm.addressees |